

 [image: _images/CAESAR_bust.png]

Welcome to CAESAR’s documentation!

CAESAR is a python-based yt extension package for analyzing
the outputs from cosmological simulations. CAESAR takes as
input a single snapshot from a simulation, and outputs a portable
and compact HDF5 catalog containing a host of galaxy and halo properties
that can be read in and explored without the original simulation
binary. CAESAR thus provides a simple and intuitive interface
for exploring object data within your outputs.

CAESAR provides further functionality such as identifying the
most massive progenitors or descendants across snapshots (see
Progenitors), and generating FSPS [http://dfm.io/python-fsps/current/] photometry and spectra for
galaxies (see Photometry). Also, the CAESAR catalog
contains particle ID lists for each galaxy/halo, enabling you
to quickly grab the relevant particle data in the original snapshot
in order to compute any other galaxy/halo quantity you want.

CAESAR is OpenMP-parallelized using cython-parallel and
joblib. It enjoys decent scaling with the (user-specifiable)
number of cores. Catalog generation does, however, have substantial
memory requirements – e.g. a run with two billion particles requires a
machine with 512 GB to generate the catalog, and this scales with the
number of particles. The resulting CAESAR catalog typically has
a filesize of less than 1% of the original snapshot, so once this is
generated, using it is not memory-intensive.

CAESAR generates a catalog as follows:

	Identify halos (or import a halo membership list)

	Compute halo physical properties

	Within each halo, identify galaxies using 6-D friends-of-friends

	Compute galaxy physical properties

	Optionally, compute galaxy photometry including line-of-sight extinction

	Create particle lists for each galaxy and halo

	Link galaxies and halos, identify centrals+satellites, quantify environment

	Output all information into a stand-alone hdf5 file

Once the CAESAR catalog has been generated, it can be loaded
and the data easily accessed using simple python commands.

CAESAR builds upon the yt [http://yt-project.org] project,
which provides support for a number of simulation codes [http://yt-project.org/doc/reference/code_support.html] and
symbolic units [http://yt-project.org/doc/analyzing/units/index.html].
All meaningful quantities stored within a CAESAR catalog have
units attached, reducing ambiguity when working with your data.
This tight connection enables you to use both yt and CAESAR
functionality straightforwardly within a single analysis package.

CAESAR currently supports the following codes/formats:

	GADGET [http://wwwmpa.mpa-garching.mpg.de/~volker/gadget/]

	GIZMO [http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html]

	TIPSY [http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html]

	ENZO [http://enzo-project.org/]

	ART [http://adsabs.harvard.edu/abs/1999PhDT........25K]

	RAMSES [http://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html]

In principle, any yt-supported simulation snapshot could be
supported by CAESAR, but some aspects may not work out-of-the-box owing
to different conventions for e.g. metallicity arrays.
CAESAR has been tested on Mufasa, Simba, Illustris/TNG, and EAGLE
snapshots.
We happily accept pull requests for further functionality and bug fixes.

To get started, follow the Getting Started link below!

Contents

	Getting Started
	Requirements

	Installation

	Updating

	Running CAESAR
	Scripted

	Command Line

	Loading CAESAR files
	Command Line

	Scripted

	Using CAESAR
	Data Structure

	Usage

	Catalog Quantities
	Structure

	galaxy_data

	Dictionary quantities

	halo data

	Particle lists

	Progenitors
	Progen over many snapshots

	Linking two specific snapshots

	Progen options

	Where is the info stored?

	Auxiliary routines

	Photometry
	Installation

	Running in member_search

	Running stand-alone

	Photometry Options

	Generating a lookup table

	Performance tips

	Aperture Quantities
	Usage

	Options

	Units
	Working with units

	Assigning units

	Removing units

	Code Reference
	CAESAR object

	FUBAR (group finding)

	Halo and Galaxy Class

	Data Manager

	Property Getter

	Assignment and Linking

	Misc. Utilities

	External Group Functions

	HI/H2 Mass Calc

	Saving and Loading

	Driver

	Progen

	VTK Visualization

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

	Requirements

	Installation

	Python and friends

	Dependencies

	yt

	CAESAR

	Updating

Requirements

	python >= 3.x [https://www.python.org/]

	numpy [http://www.numpy.org/]

	scipy [https://www.scipy.org/]

	cython [http://cython.org/]

	h5py [http://www.h5py.org/]

	matplotlib [http://www.matplotlib.org/]

	psutil [https://pypi.org/project/psutil/]

	joblib [https://joblib.readthedocs.io/]

	six [https://six.readthedocs.io/]

	astropy [https://www.astropy.org/]

	yt >= 4.0 [https://bitbucket.org/yt_analysis/yt]

Installation

Python and friends

Since this is a python package, you must have python installed!
CAESAR formally requires python-3. Some basic functionality is
still compatible with python-2, but we have discontinued further
support for this in CAESAR.

We strongly encourage using a pre-packaged python distribution,
such as Anaconda [https://www.anaconda.com/products/individual].
This will install an isolated python environment in your home
directory giving you full access to install and change packages
without fear of screwing up your system’s default python install.
Another advantage is that it comes with nearly everything you need
to get started working with python (numpy/scipy/matplotlib/etc).

Dependencies

Installing the main dependencies is very easy under Anaconda, or using the
python package manager pip [https://pypi.python.org/pypi/pip].

$> conda install numpy scipy cython h5py matplotlib psutil joblib six astropy

Alternatively, if you do not wish to use Anaconda, these can all be installed
under pip by replacing conda with pip in the line above. Some
of these automatically come with Anaconda, but the above command
will update these to the latest version if needed.

Be aware that in order for h5py to properly compile you must first have
HDF5 [https://www.hdfgroup.org/HDF5/] correctly installed (via
e.g. apt-get, brew, or manual compilation) and in your respective
environment paths.

The optional galaxy/halo photometry computation in CAESAR
requires python-fsps [http://dfm.io/python-fsps/current/], which
is a python wrapper for the FSPS fortran package. Please follow
their installation instructions [http://dfm.io/python-fsps/current/installation/] to install this.
Furthermore, you will also need two other packages that are only
available via pip:

$> pip install synphot extinction

If you wish to use the MPI driver to run single instances of Caesar over
many cores via MPI, it is also necessary to install mpi4py:

$> conda install mpi4py

Note that CAESAR is natively OpenMP-parallel, and the MPI implementation
may be system-specific.

If you wish to work with galaxy and halo particle lists (for instance to compute
your own quantities) it is highly recommended that you install pygadgetreader:

$> git clone https://github.com/dnarayanan/pygadgetreader.git
$> cd pygadgetreader
$> python setup.py install

yt

CAESAR builds on the yt [https://yt-project.org/] simulation analysis toolkit.
CAESAR requires yt version >=4.0, though a lot of functionality will still work with yt-3.6+.

We recommend installing yt via Anaconda:

$> conda install -c conda-forge yt

but other installation options are described here [https://yt-project.org/#getyt].

If you already have yt, you can check your version using yt version, and
update [http://yt-project.org/doc/installing.html#updating-yt-and-its-dependencies]
if necessary.

CAESAR

Now that we have all of the prerequisites out of the way we can clone
and install CAESAR:

$> git clone https://github.com/dnarayanan/caesar.git
$> cd caesar
$> python setup.py install

Once it finishes you should be ready to finally get some work done!

Updating

To update CAESAR simply pull the changes and reinstall:

$> cd caesar
$> git pull
$> python setup.py install

Running CAESAR

	Scripted

	member_search() options

	Command Line

CAESAR offers three basic functions:

[1] Identify galaxies and halos, compute a wide range of properties for each object, and cross-match them.

[2] Compute photometry accounting for the line-of-sight dust extinction to each star in the object.

[3] Compute the N most massive progenitors/descendants for any galaxy or halo in another snapshot
(see Progenitors docs page for usage).

Scripted

It is generally recommended to run CAESAR within a script for computing galaxy
and halo properties. This allows for more
precise control over the various options, looping over many files, parallelizing, etc.
Here is a basic script for running member_search:

import yt
import caesar

first we load your snapshot into yt
ds = yt.load('my_snapshot')

now we create a CAESAR object, and pass along the yt dataset
obj = caesar.CAESAR(ds)

now we execute member_search(), which identifies halos, galaxies, and computes
properties (including photometry; this requires installing FSPS) on 16 OpenMP cores
obj.member_search(haloid='fof',fof6d_file='my_fof6dfile',fsps_bands='uvoir',ssp_model='FSPS',ssp_table_file='FSPS_Chab_EL.hdf5',ext_law='composite',nproc=16)

finally we save the CAESAR galaxy/halo catalog to your desired filename
obj.save('my_caesar_file.hdf5')

member_search() options

Here is a more detailed description of the options shown above:

	nproc: Number of cores for OpenMP parallelization. This follows the joblib convention that negative numbers correspond to using all except nproc+1 cores, e.g. nproc=-2 uses all but 1 cores. Default: 1

	haloid: Source for particle halo ID’s.
haloid='fof' uses a 3D Friends-of-Friends (3DFOF) with b=0.2 to identify halos.
haloid='snap' reads halo membership info for each particle from the snapshot variable HaloID, if present.
Default: ‘fof’

	fof6d_file: Stores results of 6DFOF galaxy finder in a file for future retrieval. If file does not exist, it is created; if it exists, the galaxy membership information is read from this file instead of running the 6DFOF. Default: None

	fsps_bands: Triggers optional photometry computation, in specified list of bands. The fsps.list_filters() command under python-fsps lists the available bands. One can also specify a string (minimum 4 characters) that will be matched to all available bands, e.g. fsps_bands=['sdss','jwst'] will compute all bands that include the phrase sdss or jwst. Default: None

	ssp_model: Choice of FSPS, BPASS, or BC03 (Bruzual-Charlot 2003). Default: None

	ssp_table_file: Path to lookup table for FSPS photometry. If this file does not exist or this keyword is unspecified, it will be generated; this takes some time. If it exists, CAESAR will read it in. Default: None

Command Line

NOTE: CURRENTLY, RUNNING FROM THE COMMAND-LINE IS NOT OPERATIONAL.
Please use the Scripted method described above.

Loading CAESAR files

	Command Line

	Scripted

Command Line

Using the CLI we can load our CAESAR file from the previous example
automatically and have it drop us at an ipython prompt via:

$> caesar caesar_snapshot.hdf5

This will open up the caesar_snapshot.hdf5 file and check for the
CAESAR=True attribute in the HDF5 header. If found it will
proceed to deserialize the CAESAR file and drop you to an
interactive python prompt with access to the main.CAESAR
object via the obj variable. At this point you are free to
explore the data structure and manipulate at will.

Scripted

In order to do more in depth analysis, you will likely want to built
your own analysis scripts. Before getting into the nuts and bolts of
your analysis you will need to load in your CAESAR file to gain
access to all objects and their respective attributes. This can be
accomplished with the following code:

import caesar

define input file
infile = 'caesar_snapshot.hdf5'

load in input file
obj = caesar.load(infile)

Using CAESAR

	Data Structure

	Usage

Data Structure

Within the main.CAESAR object you will find a number of
lists containing any number of group.Group objects. The
primary lists are the halos and galaxies list; within each of
these you will find every object identified by CAESAR. Below is a
quick relationship diagram describing how objects are linked together:

[image: CAESAR Data Structure]
 [https://www.dropbox.com/s/df50wkx3gzrtbfa/caesar_classes.png?raw=1]From this you can see that each Halo object has a list of
galaxies, a link to its central galaxy, and a sub-list of satellite
galaxies (those who are not a central). Each Galaxy object has a
link to its parent Halo, a boolean describing if it is a central,
and a sub-list linking to all of the satellite galaxies for its parent
halo.

Usage

Usage of CAESAR all comes down to what you want to do. The real
power of the code comes with the simple relationships that link each
object. As we saw in the previous section, each group.Group
has a set of relationships. We can exploit these to intuitively query
our data. For example, say you wanted to get an array of all galaxy
masses, how would you most efficiently do that? The easiest way (in
my opinion) would be to use python’s list comprehension [https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions].
Here is a quick example (assuming you have the main.CAESAR
object loaded into the obj variable):

galaxy_masses = [i.masses['total'] for i in obj.galaxies]

This is basically a compact way of writing:

galaxy_masses = []
for gal in obj.galaxies:
 galaxy_masses.append(gal.masses['total'])

Now that in itself is not all that impressive. Things get a bit more
interesting when we start exploiting the object relationships. As
another example, say we wanted the parent halo mass of each galaxy?
Lets see how that is done:

parent_halo_masses = [i.halo.masses['total'] for i in obj.galaxies]

Since each group.Galaxy has a link to its parent
group.Halo, we have access to all of the parent halo’s
attributes. We can also begin to add conditional statements to our
list comprehension statements to further refine our results; let’s
only look at the halo masses of massive galaxies:

central_galaxy_halo_masses = [i.halo.masses['total'] for i in obj.galaxies if i.masses['total'] > 1.0e12]

Obviously we can make these list comprehensions infinitely
complicated, but I think you get the gist. The bottom line is:
CAESAR provides a convenient and intuitive way to relate objects to
one another.

Catalog Quantities

	Structure

	galaxy_data

	Dictionary quantities

	halo data

	Particle lists

CAESAR computes many quantities for galaxies (from 6DFoF) and halos identified within a given simulation snapshot. Below we describe the structure of the catalog file, and the quantities that are computed.

Structure

The top level of the catalog hdf5 file contains:

$> h5ls CAESARFILE
galaxy_data Group
global_lists Group
halo_data Group
simulation_attributes Group
tree_data Group

galaxy_data and halo_data contain the galaxy and halo catalogs, respectively. simulation_attributes contains various simulation parameters. global_lists contains some auxiliary lists; there is no good reason to directly access this. Finally, tree_data contains the output of running progen, which is not initially created by CAESAR but can be added later (click on Progenitors tab for more info).

galaxy_data

galaxy_data contains some computed quantities for each galaxy, but many of the quantities are in dictionaries which are listed in dicts (described below). There is also lists, which stores particle lists, but it shouldn’t be necessary to directly access this.

The list of quantities can be seen using h5ls:

$> h5ls CAESARFILE/galaxy_data

Quantities stored at the top level in galaxy_data are:

	GroupID – A sequential ID number for each galaxy

	parent_halo_index – Index number in halo_data for the galaxy’s parent halo

	central – Flag to indicate whether galaxy is central (i.e. most massive in stars) within its halo (1), or a satellite (0)

	pos,vel – Center-of-mass (CoM) position and velocity, including units (typically kpccm)

	ngas,nstar,ndm,nbh – Number of particles of each particle type

	sfr – Instantaneous star formation rate in Msun/yr, from summing SFR in gas particles

	sfr_100 – SFR averaged over last 100 Myr, from star particles formed in that time.

	bhmdot, bh_fedd – Central black hole accretion rate in Msun/yr, and central BH eddington ratio. The central black hole is taken to be the most massive one, if there are multiple BH in the galaxy.

	L_FIR – If photometry was done, this will contain the bolometric far-IR luminosity in erg/s (i.e. the total energy absorbed by dust extinction)

	Various list start/end values – These are indexes for the particle lists; these should not be accessed directly, but rather through glist, slist, etc. (see below)

Dictionary quantities

dicts contains the majority of the computed quantities. These are accessed via a dictionary key, e.g. obj.galaxies[0].masses['stellar'] gives the stellar mass of the first galaxy in the catalog. The full list of quantities in any given file can be seen using:

$> h5ls CAESARFILE/galaxy_data/dicts

dicts contains the following quantities:

	masses: ['gas','stellar','dm','dust','bh','HI','H2'] as well as many corresponding quantities within 30 kpccm spherical apertures denoted by _30kpc attached to each name. The first 5 of these come directly by summing particle masses. The HI and H2 masses come from assigning all the gas in the halo to its most bound galaxy within the halo (see Dave et al. 2020). Note that the dm mass from 6DFOF is 0 by definition, since the 6DFOF does not consider DM particles; the dm_30kpc however will be nonzero.

	radii: ['gas_XX','stellar_XX','dm_XX','bh_XX','baryon_XX', 'total_XX'], where XX is half_mass, r20, or r80, which are the radii enclosing 50, 20, and 80 percent of the mass of the given type. The galaxy center of mass from which the radii are found is recomputed for each type. baryon includes gas, stellar, and bh, while total includes dm as well.

	metallicities: ['mass_weighted','sfr_weighted','stellar','mass_weighted_cgm','temp_weighted_cgm']. The first two are gas-phase, weighted as indicated. The stellar metallicity is mass-weighted. The CGM metallicities are for gas outside galaxies (n_H<0.13 H atom/cm^3); this is only meaningful for halos. These are in total metal mass fractions (not solar-scaled). This uses Metallicity[0] from the snapshot, which is the total metallicity; CAESAR does not have any information regarding specific elements, this must be obtained from the snapshot directly if desired using e.g. pygadgetreader.

	velocity_dispersions: ['gas','stellar','dm','bh','baryon', 'total']. Mass-weighted velocity dispersions for each particle type, computed around the CoM velocity (recomputed for each type). These are in km/s.

	rotation: ['gas_XX','stellar_XX','dm_XX','bh_XX','baryon_XX', 'total_XX'], where XX here can be L, ALPHA, BETA, BoverT, and kappa_rot. L (3 components) is the angular momentum vector of the galaxy in Msun-kpccm-km/s. ALPHA and BETA are rotation angles required to rotate the galaxy to align with the angular momentum. BoverT is bulge-to-total mass ratio, where the bulge mass is defined kinematically as twice the counter-rotating mass. kappa_rot is the fraction of kinetic energy in rotation, as defined in Sales et al. (2012).

	ages: ['mass_weighted','metal_weighted'] Mean stellar ages, weighted by mass or (additionally) metallicity.

	temperatures: ['mass_weighted','mass_weighted_cgm','temp_weighted_cgm'] These are the average temperatures of the gas within galaxies or in the CGM. Owing to the assumed equation of state in cosmological simulations, this is typically not very meaningful for galaxies. However, it is useful for halos.

	local_mass_density and local_number_density: [300,1000,3000]. Environmental measures giving the mass and number density of CAESAR galaxies within spherical tophat apertures as indicated in kpccm.

	Photometry: absmag and appmag, along with corresponding _nodust values, for all the photometric bands computed (if photometry was run). More information is available in the Photometry docs.

halo data

halo_data contains many of the same quantities as galaxy_data. However, there are some crucial differences.

At the top level, there are some new quantities:

	minpotpos, minpotvel: Position and velocity of the particle with the lowest potential in the halo. This is often a more useful that the CoM values within halos, since FoF halos can be quite irregular in shape.

	central_galaxy: GroupID of central galaxy in the halo.

	galaxy_index_list_start/end: This is the indexing for the list of galaxy GroupID’s in the halo. DO NOT USE THESE VALUES DIRECTLY TO LOOK IN galaxy_data! These are cross-indexed, so to get the galaxy indexes within a given halo use

In[1]: halogals = np.asarray([i.galaxy_index_list for i in obj.halos])

Meanwhile, in halo_data/dicts, beyond all the galaxy_data dictionaries (except photometry) there is a new dictionary called virial_quantities:

	virial_quantities: ['circular_velocity','spin_param','temperature','mXXXc', 'rXXXc']: Circular velocity=*sqrt(GM_tot/R_tot)* where R_tot is the equivalent radius that would enclose M_tot at an overdensity of 200 times the critical. The XXX quantities for mass and radii are computed within 200, 500, or 2500 times the critical density, by expanding a sphere around minpotpos until the mean density within drops below that value. Note that only halo particles are included, so owing to the irregular shapes of FoF halos, this can lead to 200 quantities sometimes missing significant mass; for 500 and 2500 the effects are quite small. Overall, these values should be regarded as somewhat approximate to be used for rough analyses.

Particle lists

Each halo and galaxy contains a list of particles indexed by particle type. For gas, stars, DM, and BHs these are glist, slist, dmlist, and bhlist, respectively. These lists contain the indexes of particles of a given type within the original snapshot. These lists allow the user to compute any desired quantity, by looking up the required quantities within the original snapshot.

To use these lists, one must read in the particles from the snapshot. This can be done for instance using pygadgetreader. For instance, the CAESAR file does not contain metallicities of individual elements. So one might desire, e.g. the SFR-weighted oxygen abundance.

To do this, we first use pygadgetreader to read in the particle lists:

In[1]: import caesar
In[2]: from readgadget import readsnap # pygadgetreader
In[3]: obj = caesar.load(CAESARFILE)
In;4]: h = obj.simulation.hubble_constant # H0/100
In[5]: gsfr = readsnap(SNAPFILE,'sfr','gas',units=1) # particle SFRs in Mo/yr
In[6]: gmetarray = readsnap(SNAPFILE,'Metallicity','gas') # For Simba, this is an 11-element array per particle
In[7]: pOgas = np.asarray([i[4] for i in gmetarray]) # For Simba, oxygen is 5th element in the Metallicity array

Next, we use glist to compile the particles in each galaxy, and use them to compute the SFR-weighted oxygen abundance:

In[8]: Zoxy = []
In[9]: for g in sim.galaxies:
In[10]: psfr = np.array([gsfr[k] for k in g.glist]) # particle sfr's
In[11]: ZO = np.array([pOgas[k] for k in g.glist]) # oxygen mass fraction
In[12]: Zoxy.append(np.sum(ZO*psfr)/np.sum(psfr))

This fills an array Zoxy with the SFR-weighted metallicity.

In this way, CAESAR (plus a particle reader of your choice) enables the computation of any quantity associated with a given galaxy or halo object.

Progenitors

	Progen over many snapshots

	Linking two specific snapshots

	Progen options

	Where is the info stored?

	Auxiliary routines

The progen module in CAESAR links groups across snapshots, by computing the most massive progenitor(s) or descendant(s) for each group in a different snapshot.
Groups (i.e. galaxy/halo/cloud) are linked by finding the most particles in common of a specified particle type (e.g. star).
If snapshot numbers are specified in falling order, then progenitors are computed; if in rising order, then descendants are computed.
The information is appended into the CAESAR file within the hdf5 dataset tree_data, and are stored separately for progenitors and descendants, as well as separately for each group type and particle type.

Progen over many snapshots

run_progen() is the simplest way to run progen over a list of snapshots, e.g.:

In [1]: caesar.progen.run_progen('/path/to/snapshots/for/m25n256', 'snap_m25n256_', list(range(151,0,-1), prefix='caesar_')

This will find progenitors (since the snapshots are specified in falling order) in snaphots 0-151 for the snapshots in the directory provided as the first argument, with the snapshot basename provided as the second argument.
Any snapshots for which a snapshot file or Caesar file are not found, or for which there is no halo_data, are ignored (with a warning).

The snapshot are linked via daisychaining. That is, in the example above, 151 is linked to 150, 150 to 149, and so on (assuming they all exist).
If you want to link two particular snapshots, see “Linking two specific snapshots”.

The prefix option specifies the name prefix for the corresponding CAESAR file in the Groups subdirectory; in this case, snap_m25n256_151.hdf5 should have its CAESAR file in Groups/caesar_m25n256_151.hdf5, etc.
The example above uses default options for linking progenitors/descendants; other choices can be specified as noted in “Progen options” below. run_progen() only writes the information to the CAESAR file, it does not return anything.

Linking two specific snapshots

progen_finder() links the groups in two specified CAESAR objects, and then writes it to the specified CAESAR file. While normally called from run_progen(), it can be run stand-alone as well. This is useful if e.g. your locations for snapshots and Caesar files are not as assumed in run_progen(). Here is an example using progen_finder():

In [1]: import caesar
In [2]: obj1 = caesar.load(caesarfile1)
In [3]: obj2 = caesar.load(caesarfile2)
In [4]: my_progens = caesar.progen.progen_finder(obj1, obj2, caesarfile1)

plus any options you desire as listed in “Progen options”.

progen_finder() returns the progenitor or descendant list, as well as (by default) writing to the CAESAR file.
If you specify overwrite=False, the progenitor/descendant list is returned without actually writing anything to the Caesar file. This is useful if you want to link two particular snapshots but don’t want to save that for posterity.

Progen options

The following options can be passed to run_progen() or progen_finder():

	data_type: Group type to find progen/descend info for; can be galaxy, halo, or cloud. Default: galaxy

	part_type: Particle type to find progen/descend info for. Default: star

	n_most: Finds the n_most most massive progenitors/descendants. If n_most>1, the info is then stored in a array of size (ngroups,n_most). Currently can only be 1 or 2. Default: 1

	min_in_common: Requires that the current group and the prog/desc group have at least this fraction of particles in common to be considered valid. Default: 0.1

	overwrite: If True, (over)writes info into CAESAR file. If False, then if it already exists read it in and return it; but if it doesn’t already exist, compute and return it but don’t touch the CAESAR file. Default: True

	nproc: Number of OpenMP cores (using joblib [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html], passed as n_jobs). progen is already very fast, so this isn’t terribly useful, except maybe for DM halos where there are lots of groups and particles. Default: 1

Where is the info stored?

By default, the progenitor/descendant info is stored in the tree_data dataset within the CAESAR file. This is a separate dataset from galaxy_data, halo_data, etc. Within this, the information is stored as numpy arrays of integers, where each integer corresponds to the index of the group in the other snapshot that is its progenitor/descendant info.

The index name for each array is created by concatenating three pieces of information: Whether it is a progenitor or descendant; the group type; and the particle type. So an example might be progen_galaxy_star, meaning that the indexes in that array are progenitors of galaxies linked via most numbers of stars in common. This array will have exactly as many entries as there are galaxies in galaxy_data.

Each of 3 group types can be linked in two ways (progen/descend) via each of 6 particle types, making for 36 potential index names being stored in tree_data. In detail, galaxies and clouds do not include dark matter particles so e.g. descend_galaxy_dm or progen_cloud_dm2 cannot exist, so there are actually 28 potential index names.

Additionally, tree_data hold the redshift for which the progenitors and/or descendants have been identified. You can retrieve this info using the get_progen_redshift() command:

In [1]: redshift = caesar.progen.get_progen_redshift(my_caesar_file,'descend_galaxy_star')

or similarly for any other choice of index_name.

Auxiliary routines

Some other potentially useful routines are available in progen:

	z_to_snap(redshift, snaplist_file, mode) finds the closest snapshot in redshift to the provided redshift, from the list specified in snaplist_file. Specifying snaplist_file=Simba uses the snapshot values in the Simba simulation suite. Returns the snapshot number and its redshift.

	wipe_progen_info(caesar_file, [index_name]) removes index_name info from caesar_file. With no index_name (default), it wipes all datasets containing the word progen or descend; this should return the CAESAR file to the state before any progen was run.

	check_if_progen_is_present(caesar_file, index_name) checks if the dataset index_name is in the CAESAR file caesar_file

	collect_group_IDs(obj, data_type, part_type, snap_dir) collects all groups IDs for a given data_type and part_type into a single array, and returns the particle and group IDs along with a hash array of length ngroups which marks the locations of the start of each group.

Photometry

	Installation

	Running in member_search

	Running stand-alone

	Photometry Options

	Generating a lookup table

	Performance tips

CAESAR can optionally compute photometry for any object(s) in
any available FSPS band [http://dfm.io/python-fsps/current/].
This is done as in Pyloser [https://pyloser.readthedocs.io/en/latest/]:
Compute the dust extinction to each star based on the line-of-sight
dust column, attenuate its spectrum with a user-selectable attenuation
law, sum the spectra of all stars in the object, and apply the
desired bandpasses.

NOTE: CAESAR accounts for dust but does not do proper dust
radiative transfer! To e.g. model the far-IR spectrum or predict
extinction laws, you can use Powderday [https://powderday.readthedocs.io/en/latest/]. The main advantage
of CAESAR is speed. Also, it gives the user more direct control over
the attenuation law used, which may be desirable in some instances.
Results are similar to Powderday for most galaxies, but differences
at the level of ~0.1 magnitudes are not uncommon.

Installation

To compute photometry, two additional packages must be installed:

	python-fsps [http://dfm.io/python-fsps/current/installation/]: Follow
the instructions, which requires installing and compiling FSPS.

	synphot [https://synphot.readthedocs.io/en/latest/]: Available via
pip or in conda-forge.

Running in member_search

The photometry computation for galaxies can be conveniently done as part
of member_search(). This is invoked by specifying the band_names
option to member_search().

CAESAR will compute 4 magnitudes for each galaxy, corresponding
to apparent and absolute magnitudes, with and without dust. These
are stored in dictionaries absmag, absmag_nodust, appmag,
and appmag_nodust, with keywords corresponding to each requested
band (e.g. absmag['sdss_r']) When invoked within member_search(),
CAESAR computes photometry for all galaxies. For doing
halos/clouds/subset of galaxies, see Running stand-alone below.

For example, the following command will invoke member_search
for a CAESAR object obj, which will do everything as before,
then will additionally compute galaxy photometry for all SDSS and
Hubble/WFC3 filters using an LMC extinction law viewed along the z
axis:

In [1]: obj.member_search(band_names='[sdss,wfc3]',ssp_table_file='SSP_Chab_EL.hdf5',ext_law='lmc',view_dir='z')

Running stand-alone

The photometry module can also be run stand-alone for specified objects.
Any object with stars and gas (stored in slist and glist) can
have its photometry computed. To do so, first create a photometry object,
and then apply run_pyloser() to it.

For example, to run photometry for all halos in a pre-existing CAESAR catalog:

In [1]: from caesar.pyloser.pyloser import photometry
In [2]: ds = yt.load(SNAP)
In [3]: sim = caesar.load('my_caesar_file.hdf5')
In [4]: galphot = photometry(sim,sim.halos,ds=ds,band_names='sdss',nproc=16)
In [5]: galphot.run_pyloser()

All options as listed under “Photometry Options” are passable to
photometry. The computed SDSS photometry will be available in
the usual dictionaries absmag, absmag_nodust, appmag,
and appmag_nodust, for each halo.

Photometry Options

The following options can be passed to member_search() or when
instantiating the photometry class:

	band_names: (REQUIRED): The list of band(s) to compute, selected
from python-fsps [http://dfm.io/python-fsps/current/installation/]
(use fsps.list_filters() to see options). You can also specify a
substring (min. 4 characters) to do all bands that contain
that substring, e.g. 'sdss' will compute all available SDSS bands.
The v band is always computed; the difference
between the absmag and absmag_nodust gives A_V.
There are two special options: 'all' computes all FSPS bands,
while 'uvoir' computes all bands bluewards of 5 microns. Default: ['v']

	ssp_table_file: Filename containing FSPS spectra lookup table. If it
doesn’t exist, it is generated assuming a Chabrier IMF with nebular emission
and saved to this filename for future use. If you prefer different FSPS
options, first generate it using generate_SSP_table, and read it in here.
Default: 'SSP_Chab_EL.hdf5'

	ext_law: Specifies the extinction law to use. Current options
are calzetti, chevallard, conroy, cardelli (equivalently mw),
smc, and lmc. There are two composite extinction laws available:
mix_calz_mw uses mw for galaxies with specific star formation
rate sSFR<0.1 Gyr^-1, calzetti for sSFR>1, and a linear combination
in between. composite additionally adds a metallicity dependence,
using mix_calz_mw for Z>Solar, smc for Z<0.1*Solar, and a linear
combination in between. Default: 'composite'

	view_dir: Sets viewing direction for computing LOS extinction. Choices
are x, y, z. Default: 'x'

	use_dust: If present, uses the particles’ dust masses to compute the
LOS extinction. Otherwise uses the metals, with an assumed dust-to-metals
ratio of 0.4, reduced for sub-solar metallicities. Default: True

	use_cosmic_ext: Applies redshift-dependent Madau(1995) IGM attenuation
to spectra. This is computed using
synphot.etau_madau() [https://synphot.readthedocs.io/en/latest/synphot/tutorials.html#lyman-alpha-extinction].
Default: True

	nproc: Number of cores to use. If -1, it tries to use the CAESAR object’s
value, or else defaults to 1. Default: -1

Generating a lookup table

If you don’t want Caesar’s default choices of Chabrier IMF and nebular emission with
all other options set to the python-FSPS default, you will need to create a new table
and specify it with ssp_table_file when instantiating photometry.

To create a new SSP lookup table, run generate_ssp_table with the
desired FSPS options. For example:

In [1]: from caesar.pyloser.pyloser import generate_ssp_table
In [2]: generate_ssp_table('my_new_SSP_table.hdf5',Zsol=0.0134,oversample=[2,2],imf_type=1,add_neb_emission=True,sfh=0,zcontinuous=1)

Options:

	oversample oversamples in [age,metallicity] by the specified factors
from the native FSPS ranges, in order to get more accurate interpolation. Note
that setting these >1 creates a larger output file, by the product of those values.
Default: [2,2]

	Zsol sets the metallicity in solar units in order to convert the FSPS
metallicity values into a solar abundance scale. Default: Solar['total'] (see pyloser.py)

	The remaining **kwargs options are passed directly to fsps.StellarPopulations [http://dfm.io/python-fsps/current/stellarpop_api/#example],
so any stellar population available in python-FSPS can be generated.
NOTE: sfh=0 and zcontinuous=1 should always be used.

If you have a lookup table and don’t know the options used to generate it,
you can list the fsps_options data block using the
h5dump [https://support.hdfgroup.org/HDF5/doc/RM/Tools/h5dump.htm]
command at the system prompt:

% h5dump -d fsps_options my_new_SSP_table.hdf5

This will give you a bunch of hdf5 header info but at the end will be the DATA block
which lists the FSPS options used.

Performance tips

	The code is cython parallelized over objects, so for efficiency it is
best to run many objects within a single photometry instance.
Try not to do a single galaxy at a time!

	Generally, computing the extinction
and spectra takes most of the time; once the spectra are computed,
applying bandpasses is fast. So it is also better to generate as
many bands as possible in one call.

Aperture Quantities

	Usage

	Options

CAESAR comes with a stand-alone function to sum quantities within a user-specified aperture around galaxies, called get_aperture_masses(). This operates directly on galaxies and halos from a CAESAR catalog, so must be used after the catalog has been generated.

get_aperture_masses() can compute masses for any particle type, or HI/H2/SFR. The aperture size can be specified as a constant for all galaxies, or an array of length the number of galaxies. This can be done in 3-D, or in 2-D projected along any principal axis. It is fully cython parallel.

Note that get_aperture_masses() only sums over particles within a galaxy’s halo. For a large aperture, or for satellites near the edge of the halo, this may not give fully accurate answers. Also, this means 2-D projections are done through the entire halo.

Usage

This example computes the quantities listed in myquants in a 2-D aperture projected in z, within an aperture given by twice the stellar half mass radius for each galaxy, on 8 cores:

In [1]: import caesar
In [2]: from caesar.hydrogen_mass_calc import get_aperture_masses
In [3]: sim = caesar.load(CAESARFILE)
In [4]: myquants = ['gas','star','dm','sfr','HI','H2']
In [5]: rhalf = np.array([i.radii['stellar_half_mass'] for i in sim.galaxies])
In [6]: m_apert = get_aperture_masses(SNAPFILE,sim.galaxies,sim.halos,quantities=myquants,aperture=2*rhalf,projection='z',nproc=8)

get_aperture_masses() returns a 2-D array of size (Nquants,Ngal), with the aperture-summed quantities for each galaxy, in the order specified in the quantities option. CAESARFILE and SNAPFILE are the filenames of the CAESAR catalog and particle snapshot, respectively.

Options

get_aperture_masses() requires the original simulation snapshot, as well as the galaxies and halos objects from the corresponding CAESAR catalog. It operates only on galaxies, and cannot operate on a subset of objects.

The following options can be passed to get_aperture_masses():

	quantities: Can be any particle type (e.g. 'gas'), or else 'HI', 'H2' or 'sfr'. Default: ['gas','star','dm']

	aperture: The aperture size. Can be a constant, which is assumed to be in comoving kpc, or else an array of length Ngalaxies. Default: 30

	projection: None gives the 3-D aperture values. Specifying 'x', 'y', 'z' gives the 2-D aperture projected along that axis. Default: None

	exclude: None includes all particles in halo. satellites or central excludes particles in satellite or central galaxies, respectively. galaxies/both excludes all particles in galaxies. Default: None

	nproc: Number of OpenMP cores (using joblib [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html], passed as n_jobs). Default: 1

The routine returns a single 2-D array of length (Nquants,Ngal), where Nquants=len(quantities) and Ngal=len(sim.galaxies).

Units

	Working with units

	Assigning units

	Removing units

CAESAR leverages yt’s symbolic units [http://yt-project.org/doc/analyzing/units/index.html]. Every
meaningful quantity should have a unit attached to it. One of this
advantages this provides is that you no longer have to keep track of
little h or remembering if you are dealing with comoving or physical
coordinates.

Working with units

Let’s take a look at some quick examples of what the units look like,
and how we might take advantage of the easy conversion methods.
Say we have a CAESAR object with obj.simulation.redshift=2 .
Caesar generally
defaults its length units to be comoving kpc (kpccm):

In [1]: obj.galaxies[0].radii['total']
Out[1]: 22.2676089684 kpccm

Note the cm tacked on, which stands for comoving.

Because this particular galaxy is at z=2 we may want to convert that
radius to physical kiloparsecs:

In [2]: obj.galaxies[0].radii['total'].to('kpc')
Out[2]: 7.42253557308 kpc

or to physical kpc/h (using obj.simulation.hubble_constant=0.7):

In [3]: obj.galaxies[0].radii['total'].to('kpc/h')
Out[3]: 5.19577490116 kpc/h

When adding and subtracting quantities, they will be all be converted
to the units of the first quantity. You don’t have to worry about
homogenizing the units yourself!

Assigning units

Quantities that are added or subtracted must have convertible units.
This means you cannot add a simple number to a quantity with
symbolic units; you must first assign a unit to that number (or
array).

To assign a unit, you can use the yt functions YTQuantity and YTArray:

In [4]: from yt import YTQuantity
In [5]: x = YTQuantity(10, 'Mpc')
In [6]: print(x.to('kpc'))
Out[6]: 10000.0 kpc

Similarly, use YTArray for arrays.

Removing units

If you need to get rid of the units and return a value for any reason,
simply append .d to the quantity:

In [7]: print(x.d)
Out[7]: 10
In [8]: print(x.to('kpc').d)
Out[8]: 10000.0

For further information and tutorials regarding yt’s units
please visit the symbolic unit [http://yt-project.org/doc/analyzing/units/index.html] page.

The various units and unit systems that are available in yt are
described here [https://yt-project.org/doc/analyzing/units/unit_systems.html] .

 Below you will find references for the various modules and functions
contained within the CAESAR package. This information is all
pulled from docstrings within the source code and can also be accessed
from within python by putting a ? after the function.

Code Reference

	CAESAR object

	FUBAR (group finding)

	Halo and Galaxy Class

	Data Manager

	Property Getter

	Assignment and Linking
	Assignment

	Linking

	Misc. Utilities

	External Group Functions

	HI/H2 Mass Calc

	Saving and Loading
	Saver

	Loader

	Driver

	Progen

	VTK Visualization
	VTK Functions

	pyVTK Wrapper

	Index

	Module Index

	Search Page

CAESAR Module

	
class main.CAESAR(ds=0, *args, **kwargs)

	Bases: object

Master CAESAR class.

CAESAR objects contain all references to halos, galaxies, and
clouds for a single snapshot. Its output format is portable and
global object statistics can be examined without the raw
simulation file.

	Parameters

	
	ds (yt dataset, optional) – A dataset via ds = yt.load(snapshot)

	mass (str, optional) – Mass unit to store data with. Defaults to ‘Msun’.

	length (str, optional) – Length unit to store data with. Defaults to ‘kpccm’.

	velocity (str, optional) – Velocity unit to store data with. Defaults to ‘km/s’.

	time (str, optional) – Time unit to store data with. Defaults to ‘yr’.

	temperature (str, optional) – Temperature unit to store data with. Defaults to ‘K’.

Examples

>>> import caesar
>>> obj = caesar.CAESAR()

	
cloudinfo(top=10)

	Method to print general info for the most massive clouds
identified via CAESAR.

	Parameters

	top (int, optional) – Number of results to print. Defaults to 10.

Notes

This prints to terminal, and is meant for use in an
interactive session.

	
property data_manager

	On demand DataManager class.

	
galinfo(top=10)

	Method to print general info for the most massive galaxies
identified via CAESAR.

	Parameters

	top (int, optional) – Number of results to print. Defaults to 10.

Notes

This prints to terminal, and is meant for use in an
interactive session.

	
haloinfo(top=10)

	Method to print general info for the most massive halos
identified via CAESAR.

	Parameters

	top (int, optional) – Number of results to print. Defaults to 10.

Notes

This prints to terminal, and is meant for use in an
interactive session.

	
member_search(*args, **kwargs)

	Meat and potatoes of CAESAR.

This method is responsible for loading particle/field data
from disk, creating halos, galaxies and clouds, linking objects
together, and finally calculating HI/H2 masses if necessary.

	Parameters

	
	unbind_halos (boolean, optional) – Unbind halos? Defaults to False

	unbind_galaxies (boolean, optional) – Unbind galaxies? Defaults to False

	b_halo (float, optional) – Quantity used in the linking length (LL) for halos.
LL = mean_interparticle_separation * b_halo. Defaults to
b_halo = 0.2.

	b_galaxy (float, optional) – Quantity used in the linking length (LL) for galaxies.
LL = mean_interparticle_separation * b_galaxy. Defaults
to b_galaxy = b_halo * 0.2.

	ll_cloud (float, optional) – Quantity used in the linking length (LL) for clouds in
comoving kpc (kpccm).

	fofclouds (boolean,optional) – Indicates if we’re running 3D fof on clouds. Default is that this
is set to false

	fof6d (boolean, optional) – Indicates if we’re running galaxy finding with 6D FOF vs
the default of 3D FOF

	fof6d_LL_factor (float, optional) – Sets linking length for fof6d

	fof6d_mingrp (float, optional) – Sets minimum group size for fof6d

	fof6d_velLL (float, optional) – Sets linking length for velocity in fof6d

	nproc (int, optional) – Sets number of processors for fof6d and progen_rad

	blackholes (boolean, optional) – Indicate if blackholes are present in your simulation.
This must be toggled on manually as there is no clear
cut way to determine if PartType5 is a low-res particle,
or a black hole.

	dust (boolean, optional) – Indicate if active dust particles are present in your simulation.
This must be toggled on manually as there is no clear
cut way to determine if PartType3 is a low-res particle,
or an active dust particle.

	lowres (list, optional) – If you are running CAESAR on a Gadget/GIZMO zoom
simulation in HDF5 format, you may want to check
each halo for low-resolution contamination. By passing
in a list of particle types (ex. [2,3,5]) we will check
ALL objects for contamination and add the
contamination attribute to all objects. Search
distance defaults to 2.5x radii[‘total’].

Examples

>>> obj.member_search(blackholes=False)

	
reset_default_returns(group_type='all')

	Reset the default returns for object dictionaries.

This function resets the default return quantities for CAESAR
halo/galaxy/cloud objects including mass, radius, sigma,
metallicity, and temperature.

	Parameters

	
	obj (main.CAESAR) – Main CAESAR object.

	group_type ({'all', 'halo', 'galaxy', 'cloud'}, optional) – Group to reset return values for.

	
save(filename)

	Save CAESAR file.

	Parameters

	filename (str) – The name of the output file.

Examples

>>> obj.save('output.hdf5')

	
set_default_cloud_returns(category, value)

	Set the default return quantity for a given cloud
attribute.

	Parameters

	
	category (str) – The attribute to redirect to a different quantity.

	value (str) – The internal name of the new quantity which must be
present in the dictinoary

	
set_default_galaxy_returns(category, value)

	Set the default return quantity for a given galaxy
attribute.

	Parameters

	
	category (str) – The attribute to redirect to a different quantity.

	value (str) – The internal name of the new quantity which must be
present in the dictinoary

	
set_default_halo_returns(category, value)

	Set the default return quantity for a given halo attribute.

	Parameters

	
	category (str) – The attribute to redirect to a different quantity.

	value (str) – The internal name of the new quantity which must be
present in the dictinoary

	
vtk_vis(**kwargs)

	Method to visualize an entire simulation with VTK.

	Parameters

	
	obj (main.CAESAR) – Simulation object to visualize.

	ptypes (list) – List containing one or more of the following:
‘dm’,’gas’,’star’, which dictates which particles to
render.

	halo_only (boolean) – If True only render particles belonging to halos.

	galaxy_only (boolean) – If True only render particles belonging to galaxies. Note
that this overwrites halo_only.

	annotate_halos (boolean, list, int, optional) – Add labels to the render at the location of halos
annotating the group ID and total mass. If True then all
halos are annotated, if an integer list then halos of
those indexes are annotated, and finally if an integer
than the most massive N halos are annotated.

	annotate_galaxies (boolean, list, int, optional) – Add labels to the render at the location of galaxies
annotating the group ID and total mass. If True then all
galaxies are annotated, if an integer list then galaxies
of those indexes are annotated, and finally if an integer
than the most massive N galaxies are annotated.

	
property yt_dataset

	The yt dataset to perform actions on.

FUBAR

Group Class

	
class group.Cloud(obj)

	Bases: group.Group

Cloud class which has the central boolean.

	
class group.Galaxy(obj)

	Bases: group.Group

Galaxy class which has the central boolean.

	
class group.Group(obj)

	Bases: object

Parent class for halo and galaxy and halo objects.

	
_assign_local_data()

	Assign glist/slist/dmlist/bhlist/dlist for this group.
Also sets the ngas/nstar/ndm/nbh/ndust attributes.

	
_calculate_angular_quantities()

	Calculate angular momentum, spin, max_vphi and max_vr.

	
_calculate_center_of_mass_quantities()

	Calculate center-of-mass position and velocity. From caesar_mika

	
_calculate_gas_quantities()

	Calculate gas quantities: SFR/Metallicity/Temperature.

	
_calculate_masses()

	Calculate various total masses.

	
_calculate_radial_quantities()

	Calculate various component radii and half radii

	
_calculate_star_quantities()

	Calculate star quantities: Metallicity, …

	
_calculate_total_mass()

	Calculate the total mass of the object.

	
_calculate_velocity_dispersions()

	Calculate velocity dispersions for the various components.

	
_calculate_virial_quantities()

	Calculates virial quantities such as r200, circular velocity,
and virial temperature.

	
_cleanup()

	cleanup function to delete attributes no longer needed

	
_delete_attribute(a)

	Helper method to delete an attribute if present.

	
_delete_key(d, k)

	Helper method to delete a dict key.

	
_process_group()

	Process each group after creation. This entails
calculating the total mass, iteratively unbinding (if enabled),
then calculating more masses, radial quants, virial quants,
velocity dispersions, angular quants, and final gas quants.

	
_remove_dm_references()

	Galaxies/clouds do not have DM, so remove references.

	
_unbind()

	Iterative procedure to unbind objects.

	
property _valid

	Check against the minimum number of particles to see if
this object is ‘valid’.

	
contamination_check(lowres=[2, 3, 5], search_factor=1.0, printer=True)

	Check for low resolution particle contamination.

This method checks for low-resolution particles within
search_factor of the maximum halo radius. When this
method is called on a galaxy, it refers to the parent halo.

	Parameters

	
	lowres (list, optional) – Particle types to be considered low-res. Defaults to
[2,3,5]; if your simulation contains blackholes you will
want to pass in [2,3]; if your simulation contains active

dust particles you will not include 3.

	search_factor (float, optional) – Factor to expand the maximum halo radius search distance
by. Default is 2.5

	printer (boolean, optional) – Print results?

Notes

This method currently ONLY works on GADGET/GIZMO HDF5 files.

	
info()

	Method to quickly print out object attributes.

	
vtk_vis(rotate=False)

	Method to render this group’s points via VTK.

	Parameters

	rotate (boolean) – Align angular momentum vector with the z-axis before
rendering?

Notes

Opens up a pyVTK window; you must have VTK installed to use
this method. It is easiest to install via
conda install vtk.

	
write_IC_mask(ic_ds, filename, search_factor=2.5, radius_type='total')

	Write MUSIC initial condition mask to disk. If called on
a galaxy it will look for the parent halo in the IC.

	Parameters

	
	ic_ds (yt dataset) – The initial condition dataset via yt.load().

	filename (str) – The filename of which to write the mask to. If a full
path is not supplied then it will be written in the
current directory.

	search_factor (float, optional) – How far from the center to select DM particles. Default is
2.5

	print_extents (bool, optional) – Print MUSIC extents for cuboid after mask creation

Examples

>>> import yt
>>> import caesar
>>>
>>> snap = 'my_snapshot.hdf5'
>>> ic = 'IC.dat'
>>>
>>> ds = yt.load(snap)
>>> ic_ds = yt.load(ic)
>>>
>>> obj = caesar.load('caesar_my_snapshot.hdf5', ds)
>>> obj.galaxies[0].write_IC_mask(ic_ds, 'mymask.txt')

	
class group.GroupList(name)

	Bases: object

Class to hold particle/field index lists.

	
class group.GroupProperty(source_dict, name)

	Bases: object

Class to return default values for the quantities held in
the category_mapper dictionaries.

	
class group.Halo(obj)

	Bases: group.Group

Halo class which has the dmlist attribute, and child boolean.

	
group.create_new_group(obj, group_type)

	Simple function to create a new instance of a specified
group.Group.

	Parameters

	
	obj (main.CAESAR) – Main caesar object.

	group_type ({'halo', 'galaxy','cloud'}) – Which type of group? Options are: halo and galaxy.

	Returns

	group – Subclass group.Halo or group.Galaxy.

	Return type

	group.Group

Data Manager

	
class data_manager.DataManager(obj)

	Bases: object

Class to handle the initial IO and data storage for the duration of
a CAESAR run.

	Parameters

	obj (main.CAESAR) – Main CAESAR object.

	
load_particle_data(select=None)

	Loads positions, velocities, masses, particle types, and indexes.
Assigns a global glist, slist, dlist, dmlist, and bhlist used
throughout the group analysis. Finally assigns
ngas/nstar/ndm/nbh values.

Property Getter

Assignment and Linking

Assignment

	
assignment.assign_central_galaxies(obj, central_mass_definition='total')

	Assign central galaxies.

Iterate through halos and consider the most massive galaxy within
a central and all other satellites.

	Parameters

	obj (main.CAESAR) – Object containing the galaxies to assign centrals. Halos
must already be assigned via assign_galaxies_to_halos.

	
assignment.assign_clouds_to_galaxies(obj)

	Assign clouds to galaxies.

This function compares cloud_glist with galaxy_glist to determine
which galaxy the majority of particles within each cloud lies.
Finally we assign the .clouds list to each galaxy.

	Parameters

	obj (main.CAESAR) – Object containing the galaxies and halos lists.

	
assignment.assign_galaxies_to_halos(obj)

	Assign galaxies to halos.

This function compares galaxy_glist + galaxy_slist with halo_glist
+ halo_slist to determine which halo the majority of particles
within each galaxy lie. Finally we assign the .galaxies list to
each halo.

	Parameters

	obj (main.CAESAR) – Object containing the galaxies and halos lists.

Linking

	
linking.create_sublists(obj)

	Create sublists of objects.

	Will create the sublists:
	
	central_galaxies

	satellite_galaxies

	unassigned_galaxies (those without a halo)

	Parameters

	obj (main.CAESAR) – Object containing halos and galaxies lists already linked.

	
linking.link_clouds_and_galaxies(obj)

	Link clouds and galaxies to one another.

This function creates the links between cloud–>galaxy and
galaxy–>cloud objects. Is run during creation, and loading in of
each CAESAR file.

	Parameters

	obj (main.CAESAR) – Object containing halos and galaxies lists.

	
linking.link_galaxies_and_halos(obj)

	Link galaxies and halos to one another.

This function creates the links between galaxy–>halo and
halo–>galaxy objects. Is run during creation, and loading in of
each CAESAR file.

	Parameters

	obj (main.CAESAR) – Object containing halos and galaxies lists.

Misc. Utilities

	
utils.calculate_local_densities(obj, group_list)

	Calculate the local number and mass density of objects.

	Parameters

	
	obj (SPHGR object) –

	group_list (list) – List of objects to perform this operation on.

	
utils.info_printer(obj, group_type, top)

	General method to print data.

	Parameters

	
	obj (main.CAESAR) – Main CAESAR object.

	group_type ({'halo','galaxy','cloud'}) – Type of group to print data for.

	top (int) – Number of objects to print.

	
utils.memlog(msg)

	

	
utils.rotator(vals, ALPHA=0, BETA=0)

	Rotate particle set around given angles.

	Parameters

	
	vals (np.array) – a Nx3 array typically consisting of
either positions or velocities.

	ALPHA (float, optional) – First angle to rotate about

	BETA (float, optional) – Second angle to rotate about

Examples

>>> rotated_pos = rotator(positions, 32.3, 55.2)

External Group Functions

	
group_funcs.get_full_mass_radius(radii, ptype, binary)

	Get full mass radius for a set of particles.

	Parameters

	
	radii (np.ndarray[::-1]) – Radii of particles

	ptype (np.ndarray[::-1]) – Array of integers containing the particle types.

	binary (int) – Integer used to select particle types. For example,
if you are interested in particle types 0 and 3 this
value would be 2^0+2^3=9.

Notes

This function iterates forward through the array, so it
is advisable to reverse the radii & ptype arrays before
passing them via np.ndarray[::-1].

	
group_funcs.get_half_mass_radius(mass, radii, ptype, half_mass, binary)

	Get half mass radius for a set of particles.

	Parameters

	
	mass (np.ndarray) – Masses of particles.

	radii (np.ndarray) – Radii of particles.

	ptype (np.ndarray) – Array of integers containing the particle types.

	half_mass (double) – Half mass value to accumulate to.

	binary (int) – Integer used to select particle types. For example,
if you are interested in particle types 0 and 3 this
value would be 2^0+2^3=9.

	
group_funcs.get_periodic_r(boxsize, center, pos, r)

	Get periodic radii.

	Parameters

	
	boxsize (double) – The size of your domain.

	center (np.ndarray([x,y,z])) – Position in which to calculate the radius from.

	pos (np.ndarray) – Nx3 numpy array containing the positions of particles.

	r (np.array) – Empty array to fill with radius values.

	
group_funcs.get_virial_mr(Density, r, mass, collectRadii)

	Get virial mass and radius.

	Parameters

	
	Density (array) – Different densities you are interested in: e.g rho200, rhovirial, …
They have to be in ascending order.

	r (array) – Particle radii inward

	mass (array) – Cumulative Particle masses inward

	collectRadii (array) – Empty array to contain the radii
Should be the same size as the Densities

	
group_funcs.rotator(vals, Rx, Ry, ALPHA, BETA)

	Rotate a number of vectors around ALPHA, BETA

	Parameters

	
	vals (np.ndarray) – Nx3 np.ndarray of values you want to rotate.

	Rx (np.ndarray) – 3x3 array used for the first rotation about ALPHA.
The dot product is taken against each value:
vals[i] = np.dot(Rx, vals[i])

	Ry (np.ndarray) – 3x3 array used for the second rotation about BETA
The dot product is taken against each value:
vals[i] = np.dot(Ry, vals[i])

	ALPHA (double) – Angle to rotate around first.

	BETA (double) – Angle to rotate around second.

Notes

This is typically called from utils.rotator().

HI/H2 Mass Calc

	
hydrogen_mass_calc.assign_halo_gas_to_galaxies(internal_galaxy_pos, internal_galaxy_mass, internal_glist, internal_galaxy_index_list, galaxy_glist, grhoH, gpos, galaxy_HImass, galaxy_H2mass, HImass, H2mass, low_rho_thresh, boxsize, halfbox)

	Function to assign halo gas to galaxies.

When we assign galaxies in CAESAR, we only consider dense gas.
But when considering HI gas however, it is often desirable to
also consider low-density gas ‘outside’ of the galaxy. This
function calculates the mass weighted distance to each galaxy
within a given halo and assigns low-density gas to the ‘nearest’
galaxy.

Typically called from hydrogen_mass_calc.hydrogen_mass_calc().

	
hydrogen_mass_calc.check_values(obj)

	Check to make sure that we have the required fields available to
perform the hydrogen mass frac calculation.

	Parameters

	obj (main.CAESAR) – Main CAESAR object.

	Returns

	Returns True if all fields are present, False otherwise.

	Return type

	bool

	
hydrogen_mass_calc.hydrogen_mass_calc(obj, **kwargs)

	Calculate the neutral and molecular mass contents of SPH particles.

For non star forming gas particles assigned to halos we calculate
the neutral fraction based on equations from Popping+09 and
Rahmati+13. If H2 block is not present in the simulation file we
estimate the neutral and molecular fraciton via Leroy+08. Once
these fractions are calculated we assign HI/H2 masses to galaxies
& halos based on their mass-weighted distances.

	Parameters

	obj (main.CAESAR) – Main CAESAR object.

	Returns

	HImass, H2mass – Contains the HImass and H2 mass of each individual particle.

	Return type

	np.ndarray, np.ndarray

Saving and Loading

Saver

	
saver.check_and_write_dataset(obj, key, hd)

	General function for writing an HDF5 dataset.

	Parameters

	
	obj (main.CAESAR) – Main caesar object to save.

	key (str) – Name of dataset to write.

	hd (h5py.Group) – Open HDF5 group.

	
saver.save(obj, filename='test.hdf5')

	Function to save a CAESAR file to disk.

	Parameters

	
	obj (main.CAESAR) – Main caesar object to save.

	filename (str, optional) – Filename of the output file.

Examples

>>> obj.save('output.hdf5')

	
saver.serialize_attributes(obj_list, hd, hd_dicts)

	Function that goes through a list full of halos/galaxies/clouds and
serializes their attributes.

	Parameters

	
	obj (main.CAESAR) – Main caesar object.

	hd (h5py.Group) – Open HDF5 group for lists.

	hd_dicts (h5py.Group) – Open HDF5 group for dictionaries.

	
saver.serialize_global_attribs(obj, hd)

	Function that goes through a caesar object and saves general
attributes.

	Parameters

	
	obj (main.CAESAR) – Main caesar object.

	hd (h5py.File) – Open HDF5 dataset.

	
saver.serialize_list(obj_list, key, hd)

	Function that serializes a index list (glist/etc) for objects.

	Parameters

	
	obj (main.CAESAR) – Main caesar object.

	key (str) – Name of the index list.

	hd (h5py.Group) – Open HDF5 group.

Loader

This module is a lazy replacement for caesar.loader

Instead of eagerly constructing every Halo, Galaxy, and Cloud, this module
provides a class which lazily constructs Groups and their attributes only
as they are accessed, and caches them using functools.lru_cache.

The design of this module was motivated by profiling the previous eager loader,
which revealed these things dominated load time, in order of importance:
1) Creating unyt.unty_quantity objects
2) Creating Halo/Galaxy/Cloud objects
3) Reading datasets from the HDF5 file
Therefore, this module avoids creating quantities as much as possible and
caches them. It might be nice to only load part of the backing HDF5 datasets,
but that stage is already quite fast and it looks to me like the HDF5 library
(or at least h5py) has some minimum granularity at which it will pull data off
disk which is ~1M items, which at the time of writing (April 21, 2020) exceeds
the size of most datasets in caesar files, including from the m100n1024 SIMBA
run I’ve been testing with.

	
class loader.CAESAR(filename, skip_hash_check=False)

	Bases: object

	
property central_galaxies

	

	
cloudinfo(top=10)

	

	
galinfo(top=10)

	

	
haloinfo(top=10)

	

	
property satellite_galaxies

	

	
property yt_dataset

	The yt dataset to perform actions on.

	
class loader.Cloud(obj, index)

	Bases: loader.Group

	
property dlist

	

	
property glist

	

	
class loader.Galaxy(obj, index)

	Bases: loader.Group

	
property bhlist

	

	
property cloud_index_list

	

	
property clouds

	

	
property dlist

	

	
property glist

	

	
property satellites

	

	
property slist

	

	
class loader.Group

	Bases: object

	
contamination_check(lowres=[2, 3, 5], search_factor=2.5, printer=True)

	

	
info()

	

	
property mass

	

	
property metallicity

	

	
property temperature

	

	
write_IC_mask(ic_ds, filename, search_factor=2.5, radius_type='total')

	

	
class loader.Halo(obj, index)

	Bases: loader.Group

	
property bhlist

	

	
property central_galaxy

	

	
property dlist

	

	
property dm2list

	

	
property dm3list

	

	
property dmlist

	

	
property galaxies

	

	
property galaxy_index_list

	

	
property glist

	

	
property satellite_galaxies

	

	
property slist

	

	
class loader.LazyDataset(obj, dataset_path)

	Bases: object

A lazily-loaded HDF5 dataset

	
class loader.LazyDict(keys, builder)

	Bases: collections.abc.Mapping

This type should be indistinguishable from the built-in dict.
Any observable difference except the explicit type and performance
is considered a bug.

The implementation wraps a dict which initially maps every key to None,
and are replaced by calling the passed-in callable as they are accessed.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
values() → an object providing a view on D's values

	

	
class loader.LazyList(length, builder)

	Bases: collections.abc.Sequence

This type should be indistinguishable from the built-in list.
Any observable difference except the explicit type and performance
is considered a bug.

The implementation wraps a list which is intially filled with None,
which is very fast to create at any size because None is a singleton.
The initial elements are replaced by calling the passed-in callable
as they are accessed.

	
count(value) → integer -- return number of occurrences of value

	

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
loader.load(filename, skip_hash_check=False)

	

Driver

	
class driver.Snapshot(snapdir, snapname, snapnum, extension)

	Bases: object

Class for tracking paths and data for simulation snapshots.

	Parameters

	
	snapdir (str) – Path to snapshot

	snapname (str) – Name of snapshot minus number and extension

	snapnum (int) – Snapshot number

	extension (str, optional) – File extension of your snapshot, ‘hdf5’ by default.

Notes

This class attempts to concat strings to form a full path to your
simulation snapshot in the following manner:

>>> '%s/%s%03d.%s' % (snapdir, snapname, snapnum, extension)

	
_make_output_dir()

	If output directory is not present, create it.

	
member_search(skipran, **kwargs)

	Perform the member_search() method on this snapshot.

	
set_output_information(ds, prefix='caesar_', suffix='hdf5')

	Set the name of the CAESAR output file.

	
driver.drive(snapdirs, snapname, snapnums, progen=False, skipran=False, member_search=True, extension='hdf5', caesar_prefix='caesar_', **kwargs)

	Driver function for running CAESAR on multiple snapshots.

Can utilize mpi4py to run analysis in parallel given that MPI
and mpi4py is correctly installed. To do this you must create
a script similar to the example below, then execute it via:

>>> mpirun -np 8 python my_script.py

	Parameters

	
	snapdirs (str or list) – A path to your snapshot directory, or a list of paths to your
snapshot directories.

	snapname (str) – Formatting of your snapshot name disregarding any integer
numbers or file extensions; for example: snap_N256L16_

	snapnums (int or list or array) – A single integer, a list of integers, or an array of integers.
These are the snapshot numbers you would like to run CAESAR
on.

	progen (boolean, optional) – Perform most massive progenitor search. Defaults to False.

	skipran (boolean, optional) – Skip running member_search() if CAESAR outputs are already
present. Defaults to False.

	member_search (boolean, optional) – Perform the member_search() method on each snapshot. Defaults
to True. This is useful to set to False if you want to just
perform progen for instance.

	extension (str, optional) – Specify your snapshot file extension. Defaults to hdf5

	prefix (str, optional) – Specify prefix for caesar filename (replaces ‘snap_’)

	unbind_halos (boolean, optional) – Unbind halos? Defaults to False

	unbind_galaxies (boolean, optional) – Unbind galaxies? Defaults to False

	b_halo (float, optional) – Quantity used in the linking length (LL) for halos.
LL = mean_interparticle_separation * b_halo. Defaults to
b_halo = 0.2.

	b_galaxy (float, optional) – Quantity used in the linking length (LL) for galaxies.
LL = mean_interparticle_separation * b_galaxy. Defaults
to b_galaxy = b_halo * 0.2.

	ll_cloud (float, optional) – Linking length in comoving kpc (kpccm_ for clouds. Defaults
to same linking length as used for galaxies.

	fofclouds (boolean, optional) – Sets whether or not we run 3D FOF for clouds. Default is that this is not run
as this isn’t the typical use case for Caesar, and slows things down a bit

	fof6d (boolean, optional) – Sets whether or not we do 6D FOF for galaxies. if not set, the default is to do
normal 3D FOF for galaxies.

	fof6d_LL_factor (float, optional) – Sets linking length for fof6d

	fof6d_mingrp (float, optional) – Sets minimum group size for fof6d

	fof6d_velLL (float, optional) – Sets linking length for velocity in fof6d

	nproc (int, optional) – Sets number of processors for fof6d

	blackholes (boolean, optional) – Indicate if blackholes are present in your simulation.
This must be toggled on manually as there is no clear
cut way to determine if PartType5 is a low-res particle,
or a black hole.

	lowres (list, optional) – If you are running CAESAR on a Gadget/GIZMO zoom
simulation in HDF5 format, you may want to check each halo for
low-resolution contamination. By passing in a list of
particle types (ex. [2,3,5]) we will check ALL objects for
contamination and add the contamination attribute to all
objects. Search distance defaults to 2.5x radii[‘total’].

Examples

>>> import numpy as np
>>> snapdir = '/Users/bob/Research/N256L16/some_sim'
>>> snapname = 'snap_N256L16_'
>>> snapnums = np.arange(0,86)
>>>
>>> import caesar
>>> caesar.drive(snapdir, snapname, snapnums, skipran=False, progen=True)

	
driver.print_art()

	Print some ascii art.

Progen

	
progen.caesar_filename(snap, prefix, extension)

	return full Caesar filename including filetype extension for given Snapshot object.

	
progen.check_if_progen_is_present(caesar_file, index_name)

	Check CAESAR file for progen indexes.

	Parameters

	
	caesar_file (str) – Name (including path) of Caesar file with tree_data

	index_name (str) – Name of progen index to get redshift for (e.g. ‘progen_galaxy_star’)

	
progen.collect_group_IDs(obj, data_type, part_type, snap_dir)

	Collates list of particle and associated group IDs for all specified objects.
Returns particle and group ID lists, and a hash list of indexes for particle IDs
corresponding to the starting index of each group.

	Parameters

	
	obj (main.CAESAR) – Caesar object for which to collect group IDs

	data_type (str) – ‘halo’, ‘galaxy’, or ‘cloud’

	part_type (str) – Particle type

	snap_dir (str) – Path where snapshot files are located; if None, uses obj.simulation.fullpath

	
progen.find_progens(pid_current, pid_target, gid_current, gid_target, pid_hash, npart_target, n_most=None, min_in_common=0.1, nproc=1, reverse_match=False)

	Find most massive and second most massive progenitor/descendants.

	Parameters

	
	pids_current (np.ndarray) – particle IDs from the current snapshot.

	pids_target (np.ndarray) – particle IDs from the previous/next snapshot.

	gids_current (np.ndarray) – group IDs from the current snapshot.

	gids_target (np.ndarray) – group IDs from the previous/next snapshot.

	pid_hash (np.ndarray) – indexes for the start of each group in pids_current

	n_most (int) – Find n_most most massive progenitors/descendants, None for all.

	min_in_common (float) – Require >this fraction of parts in common between object and progenitor to be a valid progenitor.

	nproc (int) – Number of cores for multiprocessing. Note that this doesn’t help much since most of the time is spent in sorting.

	reverse_match (bool) –

	
progen.get_progen_redshift(caesar_file, index_name)

	Returns redshift of progenitors/descendants currently stored in tree_data.
Returns -1 (with warning) if no tree_data is found.

	Parameters

	
	caesar_file (str) – Name (including path) of Caesar file with tree_data

	index_name (str) – Name of progen index to get redshift for (e.g. ‘progen_galaxy_star’)

	
progen.progen_finder(obj_current, obj_target, caesar_file, snap_dir=None, data_type='galaxy', part_type='star', recompute=True, save=True, n_most=None, min_in_common=0.1, nproc=1, match_frac=False, reverse_match=False)

	Function to find the most massive progenitor of each Caesar object in obj_current
in the previous snapshot.
Returns list of progenitors in obj_target associated with objects in obj_current

	Parameters

	
	obj_current (main.CAESAR) – Will search for the progenitors of the objects in this object.

	obj_target (main.CAESAR) – Looking for progenitors in this object.

	caesar_file (str) – Name (including path) of Caesar file associated with primary snapshot, where
progen info will be written

	snap_dir (str) – Path where snapshot files are located; if None, uses obj.simulation.fullpath

	data_type (str) – ‘halo’, ‘galaxy’, or ‘cloud’

	part_type (str) – Particle type in ptype_ints. Current options: ‘gas’, ‘dm’, ‘dm2’, ‘star’, ‘bh’

	recompute (bool) – False = see if progen info exists in caesar_file and return, if not then compute
True = always (re)compute progens

	save (bool) – True/False = write/do not write info to caesar_file

	n_most (int) – Find n_most most massive progenitors/descendants. Stored as a list for each galaxy.
Default: None for all progenitors/descendants

	min_in_common (float) – Require >this fraction of parts in common between object and progenitor to
be a valid progenitor.

	nproc (int) – Number of cores for multiprocessing.

	match_fracs (bool) – True/False = Return / do _not_ return match fraction for each match

	reverse_match (bool) – False = match all objects where fraction of _current_ is above min_in_common
True = match all objects where fraction of _target_ is above min_in_common
if match_fracs=True, returned fraction is the fraction of the current/target (False/True)

	
progen.run_progen(snapdirs, snapname, snapnums, prefix='caesar_', suffix='hdf5', **kwargs)

	Function to run progenitor/descendant finder in specified snapshots (or redshifts) in a given directory.

	Parameters

	
	snapdirs (str or list of str) – Full path of directory(s) where snapshots are located

	snapname (str) – Formatting of snapshot name excluding any integer numbers or file extensions; e.g. ‘snap_N256L16_’

	snapnums (int or list of int) – Snapshot numbers over which to run progen. Increasing order -> descendants; Decreasing -> progens.

	prefix (str) – Prefix for caesar filename; assumes these are in ‘Groups’ subdir

	suffix (str) – Filetype suffix for caesar filename

	kwargs (Passed to progen_finder()) –

	
progen.wipe_progen_info(caesar_file, index_name=None)

	Remove all progenitor/descendant info from Caesar file.

	Parameters

	
	caesar_file (str) – Name (including path) of Caesar file with tree_data

	index_name (str (optional)) – Name (or substring) of progen index to remove (e.g. ‘progen_galaxy_star’).
If not provided, removes all progen/descend info

	
progen.z_to_snap(redshift, snaplist_file='Simba', mode='closest')

	Finds snapshot number and snapshot redshift close to input redshift.

	Parameters

	
	redshift (float) – Redshift you want to find snapshot for

	snaplist_file (str) – Name (including path) of Caesar file with a list of expansion factors (in
ascending order) at which snapshots are output. This is the same file as
used when running a Gizmo/Gadget simulation.
‘Simba’ returns the value for the default Simba simulation snapshot list.

	mode (str) – ‘closest’ finds closest one in redshift
‘higher’/’upper’/’above’ finds the closest output >= redshift
‘lower’/’below’ finds the closest output <= redshift.

VTK Visualization

There are some built in methods to visualize particle clouds via VTK.
These require the python-vtk [http://www.vtk.org/] wrapper to be
installed. Unfortunately, compiling this wrapper manually is quite
painful - I highly suggest you utilize the conda package manager
to take care of this one for you via:

$> conda install vtk

Afterwards the VTK methods described below should work.

	VTK Functions

	pyVTK Wrapper

VTK Functions

These are the exposed VTK methods for both the main.CAESAR
and group.Group objects.

	
vtk_funcs.group_vis(group, rotate=True)

	Function to visualize a group.Group with VTK.

	Parameters

	
	group (group.Group) – Group to visualize.

	rotate (boolean) – If true the positions are rotated so that the angular momentum
vector is aligned with the z-axis.

	
vtk_funcs.sim_vis(obj, ptypes=['dm', 'star', 'gas'], halo_only=True, galaxy_only=False, annotate_halos=False, annotate_galaxies=False, draw_spheres=None)

	Function to visualize an entire simulation with VTK.

	Parameters

	
	obj (main.CAESAR) – Simulation object to visualize.

	ptypes (list) – List containing one or more of the following:
‘dm’,’gas’,’star’, which dictates which particles to render.

	halo_only (boolean) – If True only render particles belonging to halos.

	galaxy_only (boolean) – If True only render particles belonging to galaxies. Note
that this overwrites halo_only.

	annotate_halos (boolean, list, int, optional) – Add labels to the render at the location of halos annotating
the group ID and total mass. If True then all halos are
annotated, if an integer list then halos of those indexes
are annotated, and finally if an integer than the most massive
N halos are annotated.

	annotate_galaxies (boolean, list, int, optional) – Add labels to the render at the location of galaxies
annotating the group ID and total mass. If True then all
galaxies are annotated, if an integer list then galaxies of
those indexes are annotated, and finally if an integer than
the most massive N galaxies are annotated.

	draw_spheres (string, boolean) – Add spheres around your annotated objects. The size is
determined by the string you pass, should be from the .radii
dict. If a boolean of True is passed it will use the total
radii.

pyVTK Wrapper

This is a wrapper for python-vtk. You can utilize these methods to
render other point data as well.

	
class vtk_vis.vtk_render

	Bases: object

Base class for the vtk wrapper.

	
Keypress(obj, event)

	

	
draw_arrow(p1, p2, shaft_r=0.01, tip_r=0.05, tip_l=0.2, balls=0, ball_color=[1, 1, 1], ball_r=1, color=[1, 1, 1])

	

	
draw_cube(center, size, color=[1, 1, 1])

	Draw a cube in the scene.

	Parameters

	
	center (list or np.ndarray) – Center of the box in 3D space.

	size (float) – How large the box should be on a side.

	color (list, optional) – Color of the outline in RGB.

	
draw_sphere(pos, r, color=[1, 1, 1], opacity=1, res=12)

	Draw a sphere in the scene.

	Parameters

	
	center (list or np.ndarray) – Center of the sphere in 3D space.

	r (float) – Radius of the sphere.

	color (list, optional) – Color of the sphere in RGB.

	opacity (float, optional) – Transparency of the sphere.

	res (int, optional) – Resolution of the sphere.

	
makebutton()

	

	
place_label(pos, text, text_color=[1, 1, 1], text_font_size=12, label_box_color=[0, 0, 0], label_box=1, label_box_opacity=0.8)

	Place a label in the scene.

	Parameters

	
	pos (tuple or np.ndarray) – Position in 3D space where to place the label.

	text (str) – Label text.

	text_color (list or np.ndarray, optional) – Color of the label text in RGB.

	text_font_size (int, optional) – Text size of the label.

	label_box_color (list or np.ndarray, optional) – Background color of the label box in RGB.

	label_box (int, optional) – 0=do not show the label box, 1=show the label box.

	label_box_opacity (float, optional) – Opacity value of the background box (1=no transparency).

	
point_render(pos, color=[1, 1, 1], opacity=1, alpha=1, psize=1)

	Render a pointcloud in the scene.

	Parameters

	
	pos (np.ndarray) – 3D positions of points.

	color (list or np.ndarray, optional) – Color of points. This can be a single RGB value
or a list of RGB values (one per point).

	opacity (float, optional) – Transparency of the points.

	alpha (float, optional) – Transparency of the points (same as opacity).

	psize (int, optional) – Size of the points.

	
quit()

	

	
render(xsize=800, ysize=800, bg_color=[0.5, 0.5, 0.5], focal_point=None, orient_widget=1)

	Final call to render the window.

	Parameters

	
	xsize (int, optional) – Horizontal size of the window in pixels.

	ysize (int, optional) – Vertical size of the window in pixels.

	bg_color (tuple or np.array, optional) – Background color in RGB.

	focal_point (tuple or np.array, optional) – Where to focus the camera on rendering.

	orient_widget (int, optional) – Show the orient widget?

 Python Module Index

 a |
 d |
 g |
 h |
 l |
 m |
 p |
 s |
 u |
 v

 		 	

 		
 a	

 	
 	
 assignment	

 		 	

 		
 d	

 	
 	
 data_manager	

 	
 	
 driver	

 		 	

 		
 g	

 	
 	
 group	

 	
 	
 group_funcs	

 		 	

 		
 h	

 	
 	
 hydrogen_mass_calc	

 		 	

 		
 l	

 	
 	
 linking	

 	
 	
 loader	

 		 	

 		
 m	

 	
 	
 main	

 		 	

 		
 p	

 	
 	
 progen	

 		 	

 		
 s	

 	
 	
 saver	

 		 	

 		
 u	

 	
 	
 utils	

 		 	

 		
 v	

 	
 	
 vtk_funcs	

 	
 	
 vtk_vis	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

_

 	
 	_assign_local_data() (group.Group method)

 	_calculate_angular_quantities() (group.Group method)

 	_calculate_center_of_mass_quantities() (group.Group method)

 	_calculate_gas_quantities() (group.Group method)

 	_calculate_masses() (group.Group method)

 	_calculate_radial_quantities() (group.Group method)

 	_calculate_star_quantities() (group.Group method)

 	_calculate_total_mass() (group.Group method)

 	_calculate_velocity_dispersions() (group.Group method)

 	
 	_calculate_virial_quantities() (group.Group method)

 	_cleanup() (group.Group method)

 	_delete_attribute() (group.Group method)

 	_delete_key() (group.Group method)

 	_make_output_dir() (driver.Snapshot method)

 	_process_group() (group.Group method)

 	_remove_dm_references() (group.Group method)

 	_unbind() (group.Group method)

 	_valid (group.Group property)

A

 	
 	assign_central_galaxies() (in module assignment)

 	assign_clouds_to_galaxies() (in module assignment)

 	assign_galaxies_to_halos() (in module assignment)

 	
 	assign_halo_gas_to_galaxies() (in module hydrogen_mass_calc)

 	
 assignment

 	module

B

 	
 	bhlist (loader.Galaxy property)

 	(loader.Halo property)

C

 	
 	CAESAR (class in loader)

 	(class in main)

 	caesar_filename() (in module progen)

 	calculate_local_densities() (in module utils)

 	central_galaxies (loader.CAESAR property)

 	central_galaxy (loader.Halo property)

 	check_and_write_dataset() (in module saver)

 	check_if_progen_is_present() (in module progen)

 	check_values() (in module hydrogen_mass_calc)

 	Cloud (class in group)

 	(class in loader)

 	
 	cloud_index_list (loader.Galaxy property)

 	cloudinfo() (loader.CAESAR method)

 	(main.CAESAR method)

 	clouds (loader.Galaxy property)

 	collect_group_IDs() (in module progen)

 	contamination_check() (group.Group method)

 	(loader.Group method)

 	count() (loader.LazyList method)

 	create_new_group() (in module group)

 	create_sublists() (in module linking)

D

 	
 	
 data_manager

 	module

 	data_manager (main.CAESAR property)

 	DataManager (class in data_manager)

 	dlist (loader.Cloud property)

 	(loader.Galaxy property)

 	(loader.Halo property)

 	dm2list (loader.Halo property)

 	
 	dm3list (loader.Halo property)

 	dmlist (loader.Halo property)

 	draw_arrow() (vtk_vis.vtk_render method)

 	draw_cube() (vtk_vis.vtk_render method)

 	draw_sphere() (vtk_vis.vtk_render method)

 	drive() (in module driver)

 	
 driver

 	module

F

 	
 	find_progens() (in module progen)

G

 	
 	galaxies (loader.Halo property)

 	Galaxy (class in group)

 	(class in loader)

 	galaxy_index_list (loader.Halo property)

 	galinfo() (loader.CAESAR method)

 	(main.CAESAR method)

 	get() (loader.LazyDict method)

 	get_full_mass_radius() (in module group_funcs)

 	get_half_mass_radius() (in module group_funcs)

 	get_periodic_r() (in module group_funcs)

 	get_progen_redshift() (in module progen)

 	get_virial_mr() (in module group_funcs)

 	
 	glist (loader.Cloud property)

 	(loader.Galaxy property)

 	(loader.Halo property)

 	
 group

 	module

 	Group (class in group)

 	(class in loader)

 	
 group_funcs

 	module

 	group_vis() (in module vtk_funcs)

 	GroupList (class in group)

 	GroupProperty (class in group)

H

 	
 	Halo (class in group)

 	(class in loader)

 	haloinfo() (loader.CAESAR method)

 	(main.CAESAR method)

 	
 	
 hydrogen_mass_calc

 	module

 	hydrogen_mass_calc() (in module hydrogen_mass_calc)

I

 	
 	index() (loader.LazyList method)

 	info() (group.Group method)

 	(loader.Group method)

 	
 	info_printer() (in module utils)

 	items() (loader.LazyDict method)

K

 	
 	Keypress() (vtk_vis.vtk_render method)

 	
 	keys() (loader.LazyDict method)

L

 	
 	LazyDataset (class in loader)

 	LazyDict (class in loader)

 	LazyList (class in loader)

 	link_clouds_and_galaxies() (in module linking)

 	link_galaxies_and_halos() (in module linking)

 	
 	
 linking

 	module

 	load() (in module loader)

 	load_particle_data() (data_manager.DataManager method)

 	
 loader

 	module

M

 	
 	
 main

 	module

 	makebutton() (vtk_vis.vtk_render method)

 	mass (loader.Group property)

 	member_search() (driver.Snapshot method)

 	(main.CAESAR method)

 	memlog() (in module utils)

 	metallicity (loader.Group property)

 	
 module

 	assignment

 	data_manager

 	driver

 	group

 	group_funcs

 	hydrogen_mass_calc

 	linking

 	loader

 	main

 	progen

 	saver

 	utils

 	vtk_funcs

 	vtk_vis

P

 	
 	place_label() (vtk_vis.vtk_render method)

 	point_render() (vtk_vis.vtk_render method)

 	print_art() (in module driver)

 	
 	
 progen

 	module

 	progen_finder() (in module progen)

Q

 	
 	quit() (vtk_vis.vtk_render method)

R

 	
 	render() (vtk_vis.vtk_render method)

 	reset_default_returns() (main.CAESAR method)

 	
 	rotator() (in module group_funcs)

 	(in module utils)

 	run_progen() (in module progen)

S

 	
 	satellite_galaxies (loader.CAESAR property)

 	(loader.Halo property)

 	satellites (loader.Galaxy property)

 	save() (in module saver)

 	(main.CAESAR method)

 	
 saver

 	module

 	serialize_attributes() (in module saver)

 	serialize_global_attribs() (in module saver)

 	
 	serialize_list() (in module saver)

 	set_default_cloud_returns() (main.CAESAR method)

 	set_default_galaxy_returns() (main.CAESAR method)

 	set_default_halo_returns() (main.CAESAR method)

 	set_output_information() (driver.Snapshot method)

 	sim_vis() (in module vtk_funcs)

 	slist (loader.Galaxy property)

 	(loader.Halo property)

 	Snapshot (class in driver)

T

 	
 	temperature (loader.Group property)

U

 	
 	
 utils

 	module

V

 	
 	values() (loader.LazyDict method)

 	
 vtk_funcs

 	module

 	vtk_render (class in vtk_vis)

 	
 	
 vtk_vis

 	module

 	vtk_vis() (group.Group method)

 	(main.CAESAR method)

W

 	
 	wipe_progen_info() (in module progen)

 	
 	write_IC_mask() (group.Group method)

 	(loader.Group method)

Y

 	
 	yt_dataset (loader.CAESAR property)

 	(main.CAESAR property)

Z

 	
 	z_to_snap() (in module progen)

 _images/CAESAR_bust.png

_images/caesar_classes.png
9roup.Group

GroupiD
ooi_type

nam, ngas, nstar

amist, gist, sist
local_mass_censity
local_numoer_censity

pos

Jver

sir

[mass -> massesy

racius > ragiy

metalicty > metallcites)
sigma -> velocty_dispersions()
|virial_quantiies()
ltemperaturesg
rotation_angles(y

[max_vphi, max_vr

Halo

Galaxy

[galaxies] halo
central_galaxy central
[satelite_galaxies] [satelites]

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to CAESAR’s documentation!

 		
 Getting Started

 		
 Requirements

 		
 Installation

 		
 Python and friends

 		
 Dependencies

 		
 yt

 		
 CAESAR

 		
 Updating

 		
 Running CAESAR

 		
 Scripted

 		
 member_search() options

 		
 Command Line

 		
 Loading CAESAR files

 		
 Command Line

 		
 Scripted

 		
 Using CAESAR

 		
 Data Structure

 		
 Usage

 		
 Catalog Quantities

 		
 Structure

 		
 galaxy_data

 		
 Dictionary quantities

 		
 halo data

 		
 Particle lists

 		
 Progenitors

 		
 Progen over many snapshots

 		
 Linking two specific snapshots

 		
 Progen options

 		
 Where is the info stored?

 		
 Auxiliary routines

 		
 Photometry

 		
 Installation

 		
 Running in member_search

 		
 Running stand-alone

 		
 Photometry Options

 		
 Generating a lookup table

 		
 Performance tips

 		
 Aperture Quantities

 		
 Usage

 		
 Options

 		
 Units

 		
 Working with units

 		
 Assigning units

 		
 Removing units

 		
 Code Reference

 		
 CAESAR object

 		
 FUBAR (group finding)

 		
 Halo and Galaxy Class

 		
 Data Manager

 		
 Property Getter

 		
 Assignment and Linking

 		
 Assignment

 		
 Linking

 		
 Misc. Utilities

 		
 External Group Functions

 		
 HI/H2 Mass Calc

 		
 Saving and Loading

 		
 Saver

 		
 Loader

 		
 Driver

 		
 Progen

 		
 VTK Visualization

 		
 VTK Functions

 		
 pyVTK Wrapper

